sábado, 25 de abril de 2015

DXIX - Razonamientos sencillos sobre el empuje de los turboreactores (1 de 2)

-Cuando recibí mi formación militar para Mecánico de Aviación en la Escuela de Especialistas de León sólo disponíamos de dos turbinas para experimentar: la Allison J-33 y la General-Electric J-47, la primera con compresor axial y la segunda con compresor axial.

                                                               E =  M  x  (V2-V1)

-La fórmula del Empuje simplificada para entender el principio era de que "Empuje = Masa de aire por diferencia de velocidades del aire de salida menos la de entrada"  o  lo que es lo mismo E = M x (V2-V1). Hoy día el concepto ha variado por el hecho de que ya no se trata de coger una masa, en general una masa pequeña y lanzarla a la máxima velocidad por el escape. Esto requería un gran consumo de combustible. 

"GE CF6" (del catálogo)

-Actualmente la teoría de los Turbo-Fan es la de manejar una gran Masa de aire y lanzarla a menor velocidad. Es decir, se han invertido los valores de la fórmula con un bajo consumo especifico de combustible respeto al requerido anteriormente. Aunque la técnica para producir "empuje" también cambió con éstos motores, el Fan es una hélice múltiple y por lo tanto el avance se produce por la tracción que ésta produce. 

"TurboFan de P&W"  (de un catálogo)
-Los gases de escape residuales también ayudan pero la energía se consume en las turbinas  de varios escalones destinadas a mover el propio Fan, y el compresor o los dos, incluso tres compresores ultimamente. 

"Los modelos de Westinghouse" (dibujos de su Bureau of Aeronautics)
-Volviendo a mis inicios y al primer concepto de la propulsión por reacción, los motores resultaban estrechos y largos (respecto a los de Fan) y como la fórmula indica se trataba de recoger una masa de aire y lanzarla a la mayor velocidad posible. El área frontal nos podía indicar en que gama de potencia se encontraba cada motor.

"La J-40 con P/C"  (del Bureau of Aeronautics de Westinghouse)
-Casi inmediatamente se aumentó la velocidad de los gases de escape con la admisión de más aire del preciso para proceder a una nueva combustión tras el motor: la Post-Combustión.

"Area descontando el cono central"  (id)
-Si hacemos un simple cálculo de geometría podemos observar que si un radio es de (supongamos) 50 cm. corresponde a una determinada área (Pi x r2) el motor dará una (supuesta) determinada potencia. El área nos engaña pues con sólo aumentar 25 cm. el radio no tenemos un 50% de potencia de más sinó que ésta sube a más del doble, porque el área pasa de 7854 cm2 a 17671'5 cm2 debido al incremento creado por el área del "anillo" exterior de sólo 25 cm (Pi x 25 al cuadrado).

"Variación con el área" (id)
-El flujo del aire crece también a cada pequeño aumento del diámetro relativo de entrada. Hay factores como el de relación de compresión del compresor y cantidad de escalones, incluso si lleva doble compresor de alta (HP) y baja (BP) presión, es decir la velocidad y ratio de compresión del flujo de ese mismo aire en cada motor. Coeficientes y valores que hay que considerar en los cálculos.

-Cada centimetro de aumento exterior significa un aumento de área mucho mayor que el producido por el centimetro precedente.

ReF.:    (DXIX)     RMV  / "Los Motores Aeroespaciales, A-Z" / Bureau of Aeronautics de Westinghouse


RECOMENDADO: Se puede leer todo el libro "Los Motores Aeroespaciales, A-Z" en FREE, "clickando" la llamada que hay en cada página de este Blog, en la columna de la izquierda y en el apartado "Páginas":
Anothers webs and blogs related: <Simuteca.com>, <aeroteca.com>,<Aerospaceengines.blog>,  <http://aeroteca.com/chezlachaux/>, <Aerospacemarket BCN. blogspot>,  (Juan Abellan. Pintor aeronáutico. Su obra <avartja.blogspot.com.es>),  <librosaviacion.blogspot.com.es>  <Ver en Youtube:  Aeroteca y Simuteca>  MUY recomendado: < aircraftengine.cz >.







No hay comentarios:

Publicar un comentario en la entrada